Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Silorane°è º¹ÇÕ·¹ÁøÀÇ ÁßÇÕ¼öÃàÀÀ·ÂÀÇ Æò°¡

Evaluation of polymerization shrinkage stress in silorane-based composites

´ëÇÑÄ¡°úº¸Á¸ÇÐȸÁö 2011³â 36±Ç 3È£ p.188 ~ 195
·ù½ÂÁö, ÀüÁöÈÆ, ¹ÎÁ¤¹ü,
¼Ò¼Ó »ó¼¼Á¤º¸
·ù½ÂÁö ( Ryu Seung-Ji ) - Á¶¼±´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Á¸Çб³½Ç
ÀüÁöÈÆ ( Cheon Ji-Hoon ) - Á¶¼±´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Á¸Çб³½Ç
¹ÎÁ¤¹ü ( Min Jeong-Bum ) - Á¶¼±´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Á¸Çб³½Ç

Abstract

¿¬±¸¸ñÀû: »õ·Î¿î silorane º¹ÇÕ·¹ÁøÀÇ ÁßÇÕ¼öÃàÀÀ·ÂÀ» ±âÁ¸ÀÇ methacrylate °è¿­ÀÇ º¹ÇÕ·¹Áø°ú ºñ±³ ºÐ¼®ÇÏ´Â °ÍÀÌ´Ù.

¿¬±¸ Àç·á ¹× ¹æ¹ý: Z250, P60, P90 °¢ ±º´ç 10°³ÀÇ ½ÃÆíÀ» ÁغñÇÏ¿´´Ù. ½ÃÆí¿¡ ½ºÆ®·¹ÀÎ °ÔÀÌÁö¸¦ ºÎÂøÇÏ°í °¢ Àç·áÀÇ Á¦Á¶»ç¿¡¼­ ÃßõÇÏ´Â Á¢ÂøÁ¦ µµÆ÷ ÈÄ 10ÃÊ°£, ¼öº¹ Àç·á Àû¿ë ÈÄ 40ÃÊ°£ ÇÒ·Î°Õ ±¤Á¶»ç±â·Î ±¤ÁßÇÕÇÑ µÚ ÁßÇÕ¼öÃàÀÀ·ÂÀ» ÃøÁ¤ ÇÏ¿´´Ù. ¿Ü°æ 10 mm, ³»°æ 7 mm, ³ôÀÌ 3 mmÀÇ ¾ÆÅ©¸±¸¯ ÁÖÇüÀ» ÁغñÇÏ°í ÁÖÇüÀÇ ³»¸éÀº 5ÃÊ°£ sandblasting ó¸®ÇÑ ÈÄ, 30ÃÊ°£ 35% ÀλêÀ¸·Î »êºÎ½Ä ½ÃÇàÇÏ¿´´Ù. ÁÖÇüÀÇ ¿Ü¸éÀº Cyanoacrylate adhesive (SOKKI)·Î ½ºÆ®·¹ÀÎ °ÔÀÌÁö¸¦ ºÎÂøÇÏ¿´´Ù. ÁÖÇüÀÇ ³»¸é°ú º¹ÇÕ ·¹ÁøÀ» Á¢ÂøÇϱâ À§ÇÑ Á¢ÂøÁ¦·Î methacrylate ±âÁúÀÇ º¹ÇÕ ·¹Áø 2Á¾Àº Single Bond (3M ESPE)¸¦, silorane ±âÁúÀÇ º¹ÇÕ·¹ÁøÀº P90 Adhesive system (3M ESPE)À» Àû¿ëÇÏ¿´°í ÇÒ·Î°Õ ±¤Á¶»ç±â¸¦ »ç¿ëÇÏ¿© 10ÃÊ°£ ±¤ÁßÇÕÇÏ¿´´Ù. ½ÃÆí¿¡ ºÎÂøµÈ ½ºÆ®·¹ÀÎ °ÔÀÌÁö¸¦ TML data logger¿¡ ¿¬°á½ÃÅ°°í ±¤ÁßÇÕ ÀüÀÇ ÃʱⰪÀ» ¼³Á¤ÇÑ´Ù. ÁßÇսð£Àº ¸ðµç ±ºÀÇ ¿¡³ÊÁö ÃÑ·®À» µ¿ÀÏÇÏ°Ô Çϱâ À§ÇØ 400 mW/ÀÇ ±¤°­µµ·Î ¼³Á¤ÇÏ¿© 40ÃÊ°£ ±¤ÁßÇÕÇÏ¿´´Ù. ±¤ÁßÇÕ ½ÃÁ¡ºÎÅÍ 1ÃÊ °£°ÝÀ¸·Î 800ÃÊ °£ÀÇ ½ºÆ®·¹ÀÎ °ªÀ» ÃøÁ¤ÇÏ¿´°í ½ºÆ®·¹ÀÎ °ªÀº Hooke¡¯s law¸¦ ÀÌ¿ëÇÏ¿© °¢ ½ÃÁ¡ÀÇ ¼öÃàÀÀ·ÂÀ¸·Î ȯ»êÇÏ¿© ±â·ÏÇÏ¿´´Ù.

°á°ú: 1. ¸ðµç ±º¿¡¼­ ±¤ÁßÇÕ Á÷ÈÄ¿¡´Â ÀϽÃÀûÀ¸·Î ÆØâÇÏ¿´´Ù°¡ ±Þ¼ÓÇÑ ¼öÃà·üÀ» º¸¿´°í ½Ã°£ÀÌ Áö³¯¼ö·Ï ¼öÃà·üÀÌ °¨¼ÒÇÏ´Â °æÇâÀ» º¸ÀÌ´Ù°¡ 200ÃÊ ÀÌÈÄ¿¡´Â ¼öÃà·üÀÌ ¿Ï¸¸ÇØÁö´Â ¾ç»óÀ» º¸¿´´Ù. 2. ¸ðµç ±º¿¡¼­ ¼öÃàÀÀ·ÂÀÌ °è¼Ó Áõ°¡ÇÏ¿´°í, silorane ±âÁúÀÇ º¹ÇÕ·¹Áø P90ÀÌ methacrylate ±âÁúÀÇ º¹ÇÕ·¹Áø Z250, P60 º¸´Ù ³·Àº ¼öÃàÀÀ·Â °ªÀ» º¸¿´´Ù(p < 0.05). 3. Methacrylate ±âÁúÀÇ º¹ÇÕ·¹ÁøÀÎ Z250°ú P60 µÎ°¡Áö Àç·á°£ ¼öÃàÀÀ·Â¿¡´Â Åë°èÀûÀ¸·Î À¯ÀÇÇÑ Â÷ÀÌ°¡ ¾ø¾ú´Ù(p > 0.05).

°á·Ð: Silorane ±âÁú º¹ÇÕ·¹ÁøÀÇ »ç¿ëÀº methacrylate ±âÁú º¹ÇÕ·¹Áøº¸´Ù ÁßÇÕ¼öÃàÀÀ·ÂÀÌ ´õ ÀÛÀ» °ÍÀ¸·Î ±â´ëµÇÁö¸¸ silorane ±âÁú º¹ÇÕ·¹ÁøÀÇ Åº¼º°è¼ö¿¡ À־ ´Ù¼Ò ºÒ¸®ÇÑ Æ¯¼ºÀÌ º¸°íµÇ´Â ¹Ù, ÀÓ»óÀû Àû¿ë¿¡ ¾Õ¼­ ÀÌ¿¡ ´ëÇÑ ÃæºÐÇÑ °íÂû ¹× Ãß°¡ÀûÀÎ ¿¬±¸°¡ ´õ ÇÊ¿äÇÒ °ÍÀ¸·Î »ç·áµÈ´Ù.

Objectives: The purpose of this study was to evaluate the polymerization shrinkage stress among conventional methacrylate-based composite resins and a silorane-based composite resin. Materials and

Methods: The strain gauge method was used for the determination of polymerization shrinkage strain. Specimens were divided by 3 groups according to various composite materials. Filtek Z-250 (3M ESPE) and Filtek P-60 (3M ESPE) were used as a conventional methacrylate-based composites and Filtek P-90 (3M ESPE) was used as a silorane-based composites. Measurements were recorded at each 1 second for the total of 800 seconds including the periods of light application. The results of polymerization shrinkage stress were statistically analyzed using One way ANOVA and Tukey test (p = 0.05).

Results: The polymerization shrinkage stress of a silorane-based composite resin was lower than those of conventional methacrylate-based composite resins (p < 0.05). The shrinkage stress between methacrylate-based composite resin groups did not show significant difference (p > 0.05).

Conclusions: Within the limitation of this study, silorane-based composites showed lower polymerization shrinkage stress than methacrylate-based composites. We need to investigate more into polymerization shrinkage stress with regard to elastic modulus of silorane-based composites for the precise result.

Å°¿öµå

½ºÆ®·¹ÀÎ °ÔÀÌÁö; ÁßÇÕ¼öÃàÀÀ·Â; Methacrylate°è º¹ÇÕ·¹Áø; Silorane°è º¹ÇÕ·¹Áø
Methacrylate composite; Polymerization shrinkage stress; Silorane composite; Strain gauge

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI